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Is Energy Increasing with Angular Momentum? 
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We submit to the community of physicists and mathematical physicists the 
following problem: prove that the ground-state energy of a system of N particles 
without spin, without statistics, and interacting by central forces increases with 
angular momentum. For two particles, this is obvious. For more than two we 
give a number of arguments which support our conjecture. 
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It is a great pleasure to dedicate this paper to Philippe Choquard,  who 
deserves our admiration as a researcher, a teacher, and a leader in research 
in theoretical physics. I have chosen a subject which is rather a question: 
something I believe to be true, but that I have not been able to prove and 
that many of my friends have not been able to prove either. Maybe the 
referee will find a proof  and reject my paper! The best would probably be 
if Philippe, after reading it, would find the proof  himself. 

The problem is this: take a quantum mechanical system of N spinless 
particles (to simplify your  life), do not impose any symmetry requirement 
on the wave function (although Bose statistics would not hurt!), and make 
these particles interact through two-body potentials depending only on the 
distance. Such a system admits J, the total relative angular momentum of 
the system, as a good quantum number. For  any given J it has a 
ground-state energy E(J) .  Is E(J )  an increasing function of J ?  That  is the 
question. 

Perhaps I should explain my motivation. I was having discussions in 
Calcutta, after giving the Memorial  Saha Lecture there, with an Indian 
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physicist, Prof. Anjan Kundu, who pointed out that there existed models 
of nuclei as q-deformed rotators, where the energy, as a function of the 
angular momentum, would reach some maximum. I1~ I replied that this was 
impossible, but later realized that there is no proof-- to  my knowledge--of 
my statement, except for two-body systems, for which it is obvious because 
the centrifugal term is explicit in the Schr6dinger equation. In that case the 
set of ground-state energies for increasing J and their interpolation forms 
what is called a "Regge trajectory. ''~2~ I still believe that it is impossible, 
and I want to present here the convergent indications that I have collected 
so far. 

1. T H E O R E M  

If E(J) designates the ground-state energy of an N-particle system with 
angular momentum J, then 

E(J)>E(O) for J>~ 1 

This is obvious: the state with angular momentum J has a 2 J +  1 
degeneracy, with magnetic quantum numbers running from M =  - J  to 
M =  +J. Hence, since the overall ground state (for arbitrary J) is non- 
degenerate and has a positive wave function under our assumptions (no 
spin, no statistics), E(J) for J~> 1 cannot be the absolute ground-state 
energy. 

2. E X A M P L E S  

2.1. Harmonic oscillator forces (l thank J.-M. Richard for help in 
this case). We take a Hamiltonian 

H=Z~--~,+ ~ ao.r ~ (I) 
i>j 

where Z aur~ is a positive-definite quadratic form. Let us restrict ourselves 
to the three-body case. Then we can define Jacobi coordinates 

p ~ - r 2 - r t  
(2) 

m~r] q-m2r 2 
k = r  2 

m~ q - m  2 

and the relative Hamiltonian, with the center-of-mass motion removed, 
becomes 

2 

= + ~ + A p2 + Bk~ + 2Cpk (3) H 
2mp zm~ 
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There is a linear transformation in p, k space which diagonalizes the inter- 
action. With the new variables p', k' we get 

H=p2p, + p2, + klp'2 + k2 k'2 (4) 

and the energy is 

e =  2 ~ (3 + 2n~, + to,) + 2 ~ (3 + 2n~, + t~,) (5) 

where n o and n;. are the numbers of nodes of the wave functions of the 
subHamiltonians. Then one has to minimize this expression for given 
J = L p . + L ; , .  

Obviously we must take 

j = lp, + l;: 

rip,----- n;: = 0  
(6) 

and minimize in lp,. Clearly, if k~ <k2,  we get 

E(J)=6 x//-~2 + 2 x / ~  (3 + J) (7) 

which can be generalized to N bodies. 

2.2. Particles 1 and 2, with equal masses, interact by an arbitrary 
potential, but 13 and 2-3 forces are equal-strength harmonic oscillator 
forces. 

Then using again the Jacobi variables (2), we have that the Hamiltonian 
is still separable 

p2 p~ 
H= + V(O)+ g'~- + ~m;. + 2922 (8) 

The energy levels are given by 

E(lp, np)+ C[2n;. + l~ + 3] (9) 

where E(lp, np) is an increasing function of lp for fixed np. To get the 
ground state we must take np = n;.= 0. Furthermore, among the possible 
choices of lp and l)., for 

II). - lpl ~< J ~ <  I~ + 1 o 

it is clear that the only possible choice is J =  lz+lp,  for otherwise one 
could decrease the energy by diminishing l;. or Ip. This still leaves a number 
of possibilities, among which there is at least one minimizing choice: 

J = / ~ + l~ (10) 
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We assume J/> 1. Consider now the case J'  = J -  1. One state of the system 
will have the quantum numbers 

t o o l f=l~.--1,  lp=lp  if I~.>11 

If = l~, lp = lp-- 1 if lp >/1 

In the first case the energy of this state will be 

C(l~, + 2 ) +  E(I~, O) < C(l ~ + 3) + E(I~, O) = E(J) 

and, in the second case, 

C(I~. + 3) + E(l~ - 1, O) < C(l ~ + 3) + E(l~, O) = E(J)  

Here the monotonicity of the energy of a two-body system with respect to 
angular momentum has been used. Now this particular state has an energy 
superior or equal to E ( J -  1), which proves our statement. 

2.3. Another rather extreme example is that of two particles with no 
interaction between them, while they interact with the third one, which is 
infinitely heavy, i.e., 

H P~ + V ( r , ) +  p~ = 2m----~l ~m2 + W(r2) (11) 

Then the energy levels are characterized by (l~, nl) and (12, n2). It is now 
obvious that one must take 

n t = n 2 = 0 ;  J = l l + l  2 

Then, following the same lines as in the previous subsection and using the 
monotonicity of the individual energies in l~ and 12, one gets the desired 
result. 

3. THE CLASSICAL CASE 

If the potential energy is lower bounded, which is guaranteed if all 
two-body potentials are lower bounded, the energy of a classical system of 
N particles has a lower bound Ec(J) for any given angular momentum J. 
This lower bound Ec(J) is not only an infimum, but a minimum, since one 
can restrict oneself to a compact region of phase space to find it. The 
energy is 

P~ + ~ Vjy(Ir,-ryl)  (12) 
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The relative angular momentum is given by 

J=~,r ixpi  (13) 

with the condition that the center of mass is at the origin 

E m i r  i = 0 (14) 

Now we have the chain of inequalities 

IJl~<EIr,• ~< E ,i E~ (15) 

which is saturated at a time t if all r; are in a plane perpendicular to J 
going through the origin, and if the motion is a global rotation around this 
axis. Combining (11) and (14), we get 

j 2  

E~> 2 5Z mir~-~.  2 + y" V~ rjl) (16) 

If in addition all forces are attractive, i.e., 

dV~ > O, Vr > 0 
dr 

(17) 

the minimizing configuration is certainly in a plane perpendicular to J and 
is a global rotation, since one saturates (15), and, by projecting the ri's on 
a plane one reduces the distances between them. 

Anyway, minimizing (16) with respect to the various r;'s, constrained 
with Z m;r i= 0, will give a lower bound to E,.(J), but this lower bound 
may coincide with Ec(J ) only if the ri are in a plane perpendicular to J. 

If the forces are not purely attractive, it is not clear that the minimizing 
configuration will be in a plane, but one can use another argument to show 
that again it is necessarily a rotation around the J axis. We can replace (14) 
by another chain of inequalities: 

m d 2 p~ t/2 IJl<<'~lr, xpil<~.ldipil<~[(~ i i ) ( ~  ~-~i)] (18) 

where the di represent the distances of the ri to the J axis. Then 

1 j2 
E"(J) >~ 2 E m,d~ + ~  V~ (19) 
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and the inequality (18) is saturated at a given time if the mot ion  is a global 
rotat ion a round the axis. 

One can minimize (19) with respect to the ri, taking into account  the 
center-of-gravity constraint.  Then one gets indeed E,.(J) since the energy 
cannot  go below that. 

Let us now show that  Ec(J) is increasing. Let rf, d[ be a set of equi- 
l ibrium positions for an angular  m o m e n t u m  J. For  an angular  m o m e n t u m  
J - 5  the energy can certainly be as small as 

1 ( J -  5) 2 
~ mi(a[) 2 + ~ V,j( Irf - r)'l) (20) 

because the lower bound (18) on the kinetic energy can be saturated for the 
angular  m o m e n t u m  J - a  by adjusting the impulsions. Therefore Ec(J-5) 
is certainly less than E~(J). 

4. A LOWER B O U N D  ON THE Q U A N T U M  ENERGY FOR 
THREE-  A N D  N - B O D Y  S Y S T E M S  

Here we repeat  an argument  that  was already presented years ago. (3~ 
The idea is to find an opera tor  lower bound on the kinetic energy. To  do 
this, we are allowed to use the basis generated by the Jacobi  variables (2), 
i.e., to expand any state as a sum of components  [l~., lp).  For  simplicity we 
restrict ourselves to equal masses. Then we can look at the diagonal  
elements of T since the off-diagonal elements will disappear.  Hence we get 

1 d 2 1 / p ( l p + l )  [ 1  1 ~ d 2 3 1~.(1~+1) 
( T )  = m dp 2 ~ p2 + - ~ ~mJ - ~ +  2m m - -  m + 22 (21) 

and, using the s tandard inequality 

d 2 1 
- ~r2 > ~ r  2 (22) 

we get 

( T ) / >  1 (lp + 1/2) 2 + 3 (1~. + 1/2) 2 
m p2 2m 22 

and since lip - %.1 < J <  lp + l;. we minimize with respect to lp, making  the 
obvious choice J =  lp + I~. and get 

( J +  1) 2 1 
T>~ 

m p2 + 222/3 
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which can be reexpressed as 

T>~ 

and hence 

3 ( J +  1) 2 

2 m(r~z + r~3 + r~3) 
(23) 

[-3 ( J +  1) 2 1 E(J) >1 inf k ~ rn(r~-~ rf23 + r~3) t- ~" Vij(ro.) j (24) 

It is interesting to.compare this lower bound with Ec(J ). In the case where 
the V U are attractive, Ec(J ) is indeed given by the infimum of (15): 

j z  

2m Z r~ + y" V~(r i -  rj) 

E E #,. /25) 
i > j  

but 

if one takes into account the center-of-gravity constraint (14). 
Then (15) and (23) coincide. 
So, at least for purely attractive forces we have 

E(J)>EC(J) (26) 

This agrees with the Golden-Symanzik theorem on the comparison of the 
quantum and classical energies ~4~ of a system, but the new element is that 
this is constrained to a given angular momentum. 

Therefore, even if we are not able to prove that E(J) is increasing, we 
are able to find an increasing lower bound. In ref. 3 we also find lower 
bounds that can be used for singular potentials, for instance, 

(27) 
1 ( 1  1 l )  3 ( J + l / 2 )  2 

- -  _"7- + 2m r~2 + r~3 + r23 

which shows that, as in the two-body case, the energy is lower bounded for 
two-body potentials less singular than r -2. 

5. POWER POTENTIALS A N D  A S Y M P T O T I C  BEHAVIOR FOR 
LARGE J IN "THE THREE-BODY CASE 

In ref. 3 we prove that at least for two-body potentials of the form r ~, 
v > 0, the ratio of the quantum and classical energies tends to unity for 
J---, oo. Depending on whether v < 2 or v > 2, the minimizing classical con- 
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figurations are either two particles coinciding and the other one further 
away, or an equilateral triangle, respectively. In both cases one finds that 
the energy increases as a positive power of J. 

6. CONCLUSION 

All these indications are not a substitute for a serious proof, but we 
are convinced that the energy increases with angular momentum.  
Presumably, the proof  is easier than that of Fermat 's  last theorem and will 
be given some day. 

A C K N O W L E D G M E N T S  

The author  is grateful to Prof. A. Kundu  for discussions and informa- 
tion and to Prof. J.-M. Richard for help in an example. He thanks Prof. 
H. Banerjee for organizing his visit in Calcutta. 

R E F E R E N C E S  

l. P. Raychev et al., J. Phys. G 16:L137 (1990). 
2. T. Regge, Nuovo Cimento 8:671 (1958); 14:951 (1959). 
3. A. Martin, Z. Phys. C 32:359 (1986). 
4. S. Golden, Phys. Ret,. 137B:1127 (1965); K. Symanzik, J. Math. Phys. 6:1155 (1965). 


